Statistical mechanics in the context of special relativity.

نویسنده

  • G Kaniadakis
چکیده

In Ref. [Physica A 296, 405 (2001)], starting from the one parameter deformation of the exponential function exp(kappa)(x)=(sqrt[1+kappa(2)x(2)]+kappax)(1/kappa), a statistical mechanics has been constructed which reduces to the ordinary Boltzmann-Gibbs statistical mechanics as the deformation parameter kappa approaches to zero. The distribution f=exp(kappa)(-beta E+betamu) obtained within this statistical mechanics shows a power law tail and depends on the nonspecified parameter beta, containing all the information about the temperature of the system. On the other hand, the entropic form S(kappa)= integral d(3)p(c(kappa) f(1+kappa)+c(-kappa) f(1-kappa)), which after maximization produces the distribution f and reduces to the standard Boltzmann-Shannon entropy S0 as kappa-->0, contains the coefficient c(kappa) whose expression involves, beside the Boltzmann constant, another nonspecified parameter alpha. In the present effort we show that S(kappa) is the unique existing entropy obtained by a continuous deformation of S0 and preserving unaltered its fundamental properties of concavity, additivity, and extensivity. These properties of S(kappa) permit to determine unequivocally the values of the above mentioned parameters beta and alpha. Subsequently, we explain the origin of the deformation mechanism introduced by kappa and show that this deformation emerges naturally within the Einstein special relativity. Furthermore, we extend the theory in order to treat statistical systems in a time dependent and relativistic context. Then, we show that it is possible to determine in a self consistent scheme within the special relativity the values of the free parameter kappa which results to depend on the light speed c and reduces to zero as c--> infinity recovering in this way the ordinary statistical mechanics and thermodynamics. The statistical mechanics here presented, does not contain free parameters, preserves unaltered the mathematical and epistemological structure of the ordinary statistical mechanics and is suitable to describe a very large class of experimentally observed phenomena in low and high energy physics and in natural, economic, and social sciences. Finally, in order to test the correctness and predictability of the theory, as working example we consider the cosmic rays spectrum, which spans 13 decades in energy and 33 decades in flux, finding a high quality agreement between our predictions and observed data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mechanics in the context of special relativity. II.

The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g., momentum, energy, etc.), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E 66, 0...

متن کامل

Why special relativity should not be a template for a fundamental reformulation of quantum mechanics

In a comparison of the principles of special relativity and of quantum mechanics, the former theory is marked by its relative economy and apparent explanatory simplicity. A number of theorists have thus been led to search for a small number of postulates—essentially information theoretic in nature—that would play the role in quantum mechanics that the relativity principle and the light postulat...

متن کامل

The Principle of Relativity: From Ungar’s Gyrolanguage for Physics to Weaving Computation in Mathematics

‎This paper extends the scope of algebraic computation based on a non standard $times$ to ‎the more basic case of a non standard $+$‎, ‎where standard means associative ‎and commutative‎. ‎Two physically meaningful examples of a non standard $+$ are ‎provided by the observation of motion in Special Relativity‎, ‎from either ‎outside (3D) or inside (2D or more)‎, ‎We revisit the ``gyro''-theory ...

متن کامل

Coherent States for 3d Deformed Special Relativity: semi-classical points in a quantum flat spacetime

We analyse the quantum geometry of 3-dimensional deformed special relativity (DSR) and the notion of spacetime points in such a context, identified with coherent states that minimize the uncertainty relations among spacetime coordinates operators. We construct this system of coherent states in both the Riemannian and Lorentzian case, and study their properties and their geometric interpretation.

متن کامل

Modal Interpretations and Relativity

Modal interpretations of quantum mechanics posit that the state vector obeys linear, unitary evolution at all times, and supplement the state vector with a set of possessed properties sufficiently rich to account for the occurrence of definite events at the macroscopic level, including definite outcomes of experiments, but sufficiently restricted so as to avoid a Kochen-Specker contradiction. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002